数值天气预报(NWP)和机器学习(ML)方法对于太阳能预测是流行的。但是,NWP模型具有多种可能的物理参数化,其需要特定于站点的NWP优化。当区域NWP模型与具有不同可能的参数化的全球气候模型一起使用时,这进一步复杂化。在该研究中,提出了一种替代方法,并评估了四种辐射模型。天气研究和预测(WRF)模型在全球和区域模式中运行,以提供太阳能辐照度的估计。然后使用ML后处理该估计以提供最终预测。该ML误差校正模型,来自WRF的归一化根均方误差高达40-50%。使用CAM,GFDL,新戈达德和RRTMG辐射模型获得的结果在此校正后可比,否定了WRF参数化调整的需求。还评估了包含附近地点和传感器数据的其他模型,后者是特别有前途的。
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
Continuous-time Markov chains are used to model stochastic systems where transitions can occur at irregular times, e.g., birth-death processes, chemical reaction networks, population dynamics, and gene regulatory networks. We develop a method to learn a continuous-time Markov chain's transition rate functions from fully observed time series. In contrast with existing methods, our method allows for transition rates to depend nonlinearly on both state variables and external covariates. The Gillespie algorithm is used to generate trajectories of stochastic systems where propensity functions (reaction rates) are known. Our method can be viewed as the inverse: given trajectories of a stochastic reaction network, we generate estimates of the propensity functions. While previous methods used linear or log-linear methods to link transition rates to covariates, we use neural networks, increasing the capacity and potential accuracy of learned models. In the chemical context, this enables the method to learn propensity functions from non-mass-action kinetics. We test our method with synthetic data generated from a variety of systems with known transition rates. We show that our method learns these transition rates with considerably more accuracy than log-linear methods, in terms of mean absolute error between ground truth and predicted transition rates. We also demonstrate an application of our methods to open-loop control of a continuous-time Markov chain.
translated by 谷歌翻译
This paper focuses on a stochastic system identification problem: given time series observations of a stochastic differential equation (SDE) driven by L\'{e}vy $\alpha$-stable noise, estimate the SDE's drift field. For $\alpha$ in the interval $[1,2)$, the noise is heavy-tailed, leading to computational difficulties for methods that compute transition densities and/or likelihoods in physical space. We propose a Fourier space approach that centers on computing time-dependent characteristic functions, i.e., Fourier transforms of time-dependent densities. Parameterizing the unknown drift field using Fourier series, we formulate a loss consisting of the squared error between predicted and empirical characteristic functions. We minimize this loss with gradients computed via the adjoint method. For a variety of one- and two-dimensional problems, we demonstrate that this method is capable of learning drift fields in qualitative and/or quantitative agreement with ground truth fields.
translated by 谷歌翻译
We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity. We present a rigorous framework for analyzing calibration measures, inspired by the literature on property testing. We propose a ground-truth notion of distance from calibration: the $\ell_1$ distance to the nearest perfectly calibrated predictor. We define a consistent calibration measure as one that is a polynomial factor approximation to the this distance. Applying our framework, we identify three calibration measures that are consistent and can be estimated efficiently: smooth calibration, interval calibration, and Laplace kernel calibration. The former two give quadratic approximations to the ground truth distance, which we show is information-theoretically optimal. Our work thus establishes fundamental lower and upper bounds on measuring distance to calibration, and also provides theoretical justification for preferring certain metrics (like Laplace kernel calibration) in practice.
translated by 谷歌翻译
The dichotomy between the challenging nature of obtaining annotations for activities, and the more straightforward nature of data collection from wearables, has resulted in significant interest in the development of techniques that utilize large quantities of unlabeled data for learning representations. Contrastive Predictive Coding (CPC) is one such method, learning effective representations by leveraging properties of time-series data to setup a contrastive future timestep prediction task. In this work, we propose enhancements to CPC, by systematically investigating the encoder architecture, the aggregator network, and the future timestep prediction, resulting in a fully convolutional architecture, thereby improving parallelizability. Across sensor positions and activities, our method shows substantial improvements on four of six target datasets, demonstrating its ability to empower a wide range of application scenarios. Further, in the presence of very limited labeled data, our technique significantly outperforms both supervised and self-supervised baselines, positively impacting situations where collecting only a few seconds of labeled data may be possible. This is promising, as CPC does not require specialized data transformations or reconstructions for learning effective representations.
translated by 谷歌翻译
To properly assist humans in their needs, human activity recognition (HAR) systems need the ability to fuse information from multiple modalities. Our hypothesis is that multimodal sensors, visual and non-visual tend to provide complementary information, addressing the limitations of other modalities. In this work, we propose a multi-modal framework that learns to effectively combine features from RGB Video and IMU sensors, and show its robustness for MMAct and UTD-MHAD datasets. Our model is trained in two-stage, where in the first stage, each input encoder learns to effectively extract features, and in the second stage, learns to combine these individual features. We show significant improvements of 22% and 11% compared to video only and IMU only setup on UTD-MHAD dataset, and 20% and 12% on MMAct datasets. Through extensive experimentation, we show the robustness of our model on zero shot setting, and limited annotated data setting. We further compare with state-of-the-art methods that use more input modalities and show that our method outperforms significantly on the more difficult MMact dataset, and performs comparably in UTD-MHAD dataset.
translated by 谷歌翻译
We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests--based on a collection of losses and hypothesis class--a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature's true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses. This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.
translated by 谷歌翻译
复杂的多目标任务需要在多个相互连接的级别(例如联盟形成,调度和运动计划)上协调异质机器人。动态变化(例如传感器和执行器故障,通信损失和意外延迟)加剧了这一挑战。我们将动态迭代任务分配图搜索(D-ITAGS)介绍到\ textit {同时}地址在涉及异构团队的动态设置中,地址为联盟组建,调度和运动计划。 D-Itag通过两个关键特征实现弹性:i)交错执行,ii)有针对性的维修。 \ textIt {交错执行}可以在每一层进行有效搜索解决方案,同时避免与其他层不兼容。 \ textIt {目标修复}识别并修复了现有解决方案的一部分,该解决方案在保存其余部分的同时受到给定破坏的影响。除了算法贡献外,我们还提供理论上的见解,以了解这些设置中时间和资源最优性之间固有的权衡,并在计划次级临时性上得出有意义的界限。我们的实验表明,在动态设置中,i)d-itag的速度明显比从头开始的重新计算要快得多,而溶液质量几乎没有损失,ii)理论次优界在实践中始终保持。
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译